Circle-seq
环状DNA是自然界中普遍存在的一种DNA分子形式,如,细菌基因组DNA、质粒、线粒体DNA等。在真核生物中还有一类特殊的环状DNA分子,它们是从正常基因组中分离或脱落下来,游离于染色体基因组之外,以特殊的方式参与生理或病理过程。
RNA seq检测某一特定时间点,生物样品中RNA的表达情况及定量的方法,可以用来研究分析细胞转录组在不同组织样品间基因表达差异情况、在时间轴上不同时间点连续的变化,以及转录本的可变剪切和SNP位点等,最新进展还包括单细胞转录组学和固定组织的原位测序。
RNA-seq
随着研究的深入,发现长链非编码RNA(lncRNA)扮演者重要角色,除了mRNA,RNA-seq技术同样可用于研究RNA如,miRNA,tRNA,rRNA,lncRNA等。
LncRNA-seq
目前认为eRNA(enhancer-derived RNA)是转录于基因组上增强子区域的 RNA。早期研究发现基因外(extragenic)及基因间区(intergenic)的 DNA 也可转录出 RNA,增强子转录的 RNA 分子(eRNA)过去认为是由 enhancer 折叠到靶基因 promoter 附近时,招募的 RNA 聚合酶 II 结合产生的 RNA 噪音。
eRNA-seq
目前对CircRNA的注释很全面了,CircRNA-seq基本原理是去识别反向剪切的位点(backsplice)。CircRNAd主要来源于外显子,同一个位点可能形成多个circRNA,每个circRNA可能包含一个或多个外显子。
CircRNA-seq
RNA结构在基因表达调控的过程中扮演着重要角色,在细胞内,绝大多数RNA通过分子内的碱基配对可形成二级结构,并在RNA结合蛋白(RBP)的介导下折叠成复杂的三级结构,高度结构化的RNA通过与其他RNA分子相互作用以发挥生物学调控功能,因此解析细胞内RNA的原位高级结构及作用靶标是研究其功能机制的关键。
RIC-seq
RIP-seq
目前研究发现RNA结合蛋白(RNA-binding proteins,RBPs)是调节基因表达的关键因素。RBP功能缺失会导致很多疾病,例如神经病变,自身免疫缺陷和癌症等。为研究RBPs调控RNA的机制,涌现出大量的新技术。
目前研究发现RNA结合蛋白(RNA-binding proteins,RBPs)是调节基因表达的关键因素。RBP功能缺失会导致很多疾病,例如神经病变,自身免疫缺陷和癌症等。为研究RBPs调控RNA的机制,涌现出大量的新技术如RNA免疫共沉淀(RNA immunoprecipitation,RIP),紫外交联免疫沉淀(crosslinking-immunoprecipitation,CLIP)等。
eCLIP-seq
经典中心法则指出DNA转录产生mRNA,而mRNA指导蛋白质的合成,蛋白质是生命活动的主要承担者。然而科学家们发现人类基因组中70%以上的DNA可以转录产生RNA,而具有编码蛋白能力的mRNA只占3%左右,说明多数转录的RNA分子都属于非编码RNA,对于RNA的翻译主要分为:不翻译,部分翻译,从头翻译,过度翻译。
Ribo-seq
该技术用于鉴定DNA与相关蛋白结合的部位,可对目标蛋白在全基因组上的结合位点进行精确定位。在活细胞内固定DNA与蛋白结合的复合体,然后用蛋白特异性的抗体,通过抗原抗体特异性结合的免疫学手段捕获该复合体,然后洗脱蛋白质,得到与目的蛋白结合的DNA片段,将富集到的DNA片段进行上机测序。测序成本的降低让ChIP-seq成为表观研究的利器之一。
ChIP-seq
CUT&Tag(Cleavage Under Targets and Tagmentation, CUT&Tag)是一种研究蛋白质与DNA互作的新方法。该方法通过分子生物学手段将高活性的Tn5转座酶与Protein A融合,并装载建库接头引物形成pA-Tn5转座复合物。在抗体的引导下该pA-Tn5转座复合物可靶向切割目的蛋白附近的DNA序列。
CUT&Tag
ATAC-seq技术,全称为:Assay for Transposase-Accessible Chromatin with high throughput sequencing),是2013年由斯坦福大学William J. Greenleaf和Howard Y. Chang实验室开发的一种用于研究染色质可及性(通常也理解为染色质的开放性)的方法。
ATAC-seq
5-甲基胞嘧啶(5-Methylcytosine,m5C),在RNA中广泛分布,早在上世纪70年代就已发现存在于mRNA上。当时由于技术的局限性,一直未能充分研究。近期研究发现mRNA m5C在哺乳动物中的分布十分保守,在不同组织中修饰的基因具有特异性。随着NGS的广泛应用,RNA修饰研究已是表观遗传领域的热点,而m5C-RIP-seq则是研究m5C修饰强有力的技术之一。
m5C-meRIP-seq
m7G修饰,是一种自带正电荷的RNA甲基化修饰,在甲基化转移酶的作用下,使RNA鸟嘌呤(G)的第七位氮原子加上甲基的一种化学修饰。m7G RNA甲基化修饰常存在于真核生物mRNA 5’帽子结构,具有调控mRNA的转运,翻译,剪切过程,除了存在于5’帽子结构外,m7G也存在于tRNA和rRNA序列内部。
m7G-meRIP-seq
ac4C(N4-acetylcytidine,N4位乙酰胞嘧啶)是一种真核原生生物保守的化学修饰。首次发现于细菌tRNA met的反密码子第一位,其存在保证了翻译过程的准确性,近期研究显示mRNA上也存在大量的ac4C。该修饰可以促进蛋白翻译,影响RNA的稳定性与可变剪切,调控基因表达。
acRIP-seq
m6A修饰(N6-methyladenosine),是指在RNA腺嘌呤第6位氮原子上的甲基化修饰,修饰位点附近序列高度保守,随着NGS的广泛应用,RNA修饰得到了广泛研究,已是表观遗传领域的热点,而MeRIP-seq则是研究m6A修饰强有力的技术之一。
m6A-meRIP-seq
m1A(N1-methyladenosine)便是其中之一,该修饰在非编码RNA和mRNA上普遍存在,在人类细胞中,m1A存在于线粒体tRNA和细胞质tRAN的9位和第58位核糖腺苷酸上,m1A修饰在维持这些非编码RNA的结构和功能方面起着重要作用。除了存在于非编码RNA,在于哺乳动物mRNA上也存在m1A修饰,且在5’UTR区有较多的呈现。
m1A-meRIP-seq
基因科技方案提供者